Some termite species are very regular down to the time and day of year that nuptial flights are made. Other species vary widely on the day and time. Certain environmental conditions, such as heat, light (time of day), rainfall and moisture conditions, wind, atmospheric pressure (especially rapid changes in pressure) and the electrical properties of the atmosphere (associated with thunderstorms) trigger the emergence of alates, and each species has a definite set of conditions under which swarming will occur. The number of alates produced will be proportionate to the age and size of the colony, while environmental conditions regulate the number of swarms emerging from the colony. The bulk of a colonies alates will be released in one or two synchronized swarms and then a few at a time are released throughout the rest of the season. Swarming termites constitute a dispersal stage, rather than a true mating flight.

Male and female alates fly from the colony and travel varying distances. They are extremely weak flyers, but individuals can travel great distances carried by air currents during the summer monsoon season. Any alates that try to return from the outside are usually killed. Often, the soldier castes congregate around colony openings to defend the release of the alates.

Only a small number of the swarmers survive to develop colonies. The majority fall prey to birds, toads, reptiles, insects (primarily ants) and other predators. Many others die from dehydration or injury. When a pair alights, they shed or pull off their wings and immediately attempt to enter wood. Swarmers usually enter wood through cracks, natural checks, overlapping or adjoining pieces, or exposed end grain. A very small nest is developed after the pair has mated. Initially the queen lays relatively few eggs. The male, or king, remains with the female, since periodic mating is required for continued egg development.

Immatures hatch within several weeks and are cared for by the king and queen. After two molts, immatures assume the role of workers and begin to feed and care for the original pair. Eggs are not deposited continuously, and in fact, very few are deposited the first year. In subsequent years, the young queen matures and will lay more eggs. Eventually, the colony stabilizes when the queen reaches maximum egg production. At that point the colony will contain eggs, immatures, soldiers and reproductives. If the queen dies, one or more secondary reproductives take over her duties. The maximum size of a colony depends on factors such as location, food availability and environmental conditions. Most colonies remain small, but multiple colonies in the same piece of wood may contain up to 10,000 individuals. A colony grows through the queen’s increased egg production and the accumulation of long-lived individuals.

Drywood termites derive their nutrition from cellulose in wood. Within the termite’s gut are large numbers of bacteria and single-celled animals called protozoa. The protozoa produce enzymes that digest cellulose causing the breakdown of wood particles to simpler compounds that termites can absorb as food. The immature consume wood and share their nourishment with the developing young, soldiers, and reproductive’s.

Moisture is not as important to drywood termites as it is to subterranean termites. Drywood termites require no contact with the soil or with any other source of moisture. They extract water from the wood on which they feed, and also produce water internally during the digestive process. They require as little as 2.5 to 3 percent moisture, but prefer wood with 10 percent moisture content. Drywood termites often establish nests in roof materials and wooden wall supports accessed under eaves. However, despite being capable of surviving on low wood moisture they are also found in wood associated with a water source such as a leaky pipe or water heater. Dead wood accumulating around buildings and homes often serves as a source of infestation.

Generally, the first indirect sign of infestation is the discovery of fecal pellets or the presence of alates on windowsills or near lights. Alates found inside the house (if windows and doors have been closed), are an indication of infestation within the structure. Another indication of infestation is the presence of discarded wings near emergence sites, on windowsills or caught up in cobwebs. The presence of alates outdoors is a natural phenomenon and is not an implication of home infestation.

Drywood termites spend their entire lives inside wood. They construct round “kick holes” in infested wood, through which the fecal pellets are eliminated from the galleries or tunnels. These pellets accumulate in small piles below the kick holes, or will be scattered if the distance between the kick hole and the surface below is very great. Fecal pellets also may be found caught in spider webs.

Termite droppings are distinctive and used for identification of drywood termite infestation. Drywood fecal pellets are hard, elongated and less than 1/25 inch long. They have rounded ends and six flattened or concavely depressed sides with ridges at angles between the six surfaces. The characteristic shape results when the termite exerts pressure on the fecal material to extract and conserve moisture in its hindgut. Typically the pellets are a light tan in color with some black ones mixed in.

Springer Termite Solutions

12410 Foothill Blvd A,

Los Angeles, CA 91342

Phone. 818-834-3825